WELCOME TO YOUR BLOG...!!!.YOU ARE N°

Modeling a falling slinky




(Submitted on 22 Aug 2012)
[A video showing a falling slinky in slow motion and some explanations by one of the authors can be seen in:
A slinky is an example of a tension spring: in an unstretched state a slinky is collapsed, with turns touching, and a finite tension is required to separate the turns from this state. If a slinky is suspended from its top and stretched under gravity and then released, the bottom of the slinky does not begin to fall until the top section of the slinky, which collapses turn by turn from the top, collides with the bottom. The total collapse time t_c (typically ~0.3 s for real slinkies) corresponds to the time required for a wave front to propagate down the slinky to communicate the release of the top end. We present a modification to an existing model for a falling tension spring (Calkin 1993) and apply it to data from filmed drops of two real slinkies. The modification of the model is the inclusion of a finite time for collapse of the turns of the slinky behind the collapse front propagating down the slinky during the fall. The new finite-collapse time model achieves a good qualitative fit to the observed positions of the top of the real slinkies during the measured drops. The spring constant k for each slinky is taken to be a free parameter in the model. The best-fit model values for k for each slinky are approximately consistent with values obtained from measured periods of oscillation of the slinkies.
Comments:30 pages, 11 figures
Subjects:Popular Physics (physics.pop-ph); Classical Physics (physics.class-ph); Physics Education (physics.ed-ph)
Cite as:arXiv:1208.4629v1 [physics.pop-ph]

No hay comentarios:

Publicar un comentario

COMENTE SIN RESTRICCIONES PERO ATÉNGASE A SUS CONSECUENCIAS